On the isospectral orbifold–manifold problem for nonpositively curved locally symmetric spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exotic smooth structures on nonpositively curved symmetric spaces

We construct series of examples of exotic smooth structures on compact locally symmetric spaces of noncompact type. In particular, we obtain higher rank examples, which do not support Riemannian metric of nonpositive curvature. The examples are obtained by taking the connected sum with an exotic sphere. To detect the change of the smooth structure we use a tangential map from the locally symmet...

متن کامل

Isospectral locally symmetric manifolds

In this article we construct closed, isospectral, non-isometric locally symmetric manifolds. We have three main results. First, we construct arbitrarily large sets of closed, isospectral, non-isometric manifolds. Second, we show the growth of size these sets of isospectral manifolds as a function of volume is super-polynomial. Finally, we construct pairs of infinite towers of finite covers of a...

متن کامل

On actions of discrete groups on nonpositively curved spaces

This note contains several observations concerning discrete groups of non-parabolic isometries of spaces of nonpositive curvature. We prove that (almost all) surface mapping class groups do not admit such actions; in particular, they do not act cocompactly. A new obstruction to the existence of a nonpositively curved metric on closed manifolds is presented. We give examples of 4-manifolds bered...

متن کامل

Gradient Flows on Nonpositively Curved Metric Spaces and Harmonic Maps

The notion of gradient flows is generalized to a metric space setting without any linear structure. The metric spaces considered are a generalization of Hilbert spaces, and the properties of such metric spaces are used to set up a finite-difference scheme of variational form. The proof of the Crandall–Liggett generation theorem is adapted to show convergence. The resulting flow generates a stro...

متن کامل

Conjugacy rigidity for nonpositively curved graph manifolds

We show that the metric of nonpositively curved graph manifolds is determined by its geodesic flow. More precisely we show that if the geodesic flows of two nonpositively curved graph manifolds are C0 conjugate then the spaces

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometriae Dedicata

سال: 2016

ISSN: 0046-5755,1572-9168

DOI: 10.1007/s10711-016-0210-0