On the isospectral orbifold–manifold problem for nonpositively curved locally symmetric spaces
نویسندگان
چکیده
منابع مشابه
Exotic smooth structures on nonpositively curved symmetric spaces
We construct series of examples of exotic smooth structures on compact locally symmetric spaces of noncompact type. In particular, we obtain higher rank examples, which do not support Riemannian metric of nonpositive curvature. The examples are obtained by taking the connected sum with an exotic sphere. To detect the change of the smooth structure we use a tangential map from the locally symmet...
متن کاملIsospectral locally symmetric manifolds
In this article we construct closed, isospectral, non-isometric locally symmetric manifolds. We have three main results. First, we construct arbitrarily large sets of closed, isospectral, non-isometric manifolds. Second, we show the growth of size these sets of isospectral manifolds as a function of volume is super-polynomial. Finally, we construct pairs of infinite towers of finite covers of a...
متن کاملOn actions of discrete groups on nonpositively curved spaces
This note contains several observations concerning discrete groups of non-parabolic isometries of spaces of nonpositive curvature. We prove that (almost all) surface mapping class groups do not admit such actions; in particular, they do not act cocompactly. A new obstruction to the existence of a nonpositively curved metric on closed manifolds is presented. We give examples of 4-manifolds bered...
متن کاملGradient Flows on Nonpositively Curved Metric Spaces and Harmonic Maps
The notion of gradient flows is generalized to a metric space setting without any linear structure. The metric spaces considered are a generalization of Hilbert spaces, and the properties of such metric spaces are used to set up a finite-difference scheme of variational form. The proof of the Crandall–Liggett generation theorem is adapted to show convergence. The resulting flow generates a stro...
متن کاملConjugacy rigidity for nonpositively curved graph manifolds
We show that the metric of nonpositively curved graph manifolds is determined by its geodesic flow. More precisely we show that if the geodesic flows of two nonpositively curved graph manifolds are C0 conjugate then the spaces
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometriae Dedicata
سال: 2016
ISSN: 0046-5755,1572-9168
DOI: 10.1007/s10711-016-0210-0